Decreased striatal dopamine release underlies increased expression of long-term synaptic potentiation at corticostriatal synapses 24 h after 3-nitropropionic-acid-induced chemical hypoxia.
نویسندگان
چکیده
The striatum is particularly sensitive to the irreversible inhibitor of succinate dehydrogenase 3-nitropropionic acid (3-NP). In the present study, we examined early changes in behavior and dopamine and glutamate synaptic physiology created by a single systemic injection of 3-NP in Fischer 344 rats. Hindlimb dystonia was seen 2 h after 3-NP injections, and rats performed poorly on balance beam and rotarod motor tests 24 h later. Systemic 3-NP increased NMDA receptor-dependent long-term potentiation (LTP) at corticostriatal synapses over the same time period. The 3-NP-induced corticostriatal LTP was not attributable to increased NMDA receptor number or function, because 3-NP did not change MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine] binding or NMDA/AMPA receptor current ratios. The LTP seen 24 h after 3-NP was D(1) receptor dependent and reversed by exogenous addition of dopamine or a D(2) receptor agonist to brain slices. HPLC and fast-scan cyclic voltammetry revealed a decrease in dopamine content and release in rats injected 24 h earlier with 3-NP, and much like the enhanced LTP, dopamine changes were reversed by 48 h. Tyrosine hydroxylase expression was not changed, and there was no evidence of striatal cell loss at 24-48 h after 3-NP exposure. Sprague Dawley rats showed similar physiological responses to systemic 3-NP, albeit with reduced sensitivity. Thus, 3-NP causes significant changes in motor behavior marked by parallel changes in striatal dopamine release and corticostriatal synaptic plasticity.
منابع مشابه
Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
Single action potentials (APs) backpropagate into the higher-order dendrites of striatal spiny projection neurons during cortically driven "up" states. The timing of these backpropagating APs relative to the arriving corticostriatal excitatory inputs determines changes in dendritic calcium concentration. The question arises to whether this spike-timing relative to cortical excitatory inputs can...
متن کاملThe Cdk5 inhibitor Roscovitine increases LTP induction in corticostriatal synapses
In corticostriatal synapses, LTD (long-term depression) and LTP (long-term potentiation) are modulated by the activation of DA (dopamine) receptors, with LTD being the most common type of long-term plasticity induced using the standard stimulation protocols. In particular, activation of the D1 signaling pathway increases cAMP/PKA (protein kinase A) phosphorylation activity and promotes an incre...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملDecreased frequency but not amplitude of quantal synaptic responses associated with expression of corticostriatal long-term depression.
We have investigated the site of expression of striatal long-term synaptic depression (LTD) using analysis of Sr2+-induced asynchronous release of quanta from stimulated synapses. The cumulative amplitude distribution of Sr2+-induced asynchronous synaptic responses overlaps with that of miniature EPSCs (mEPSCs), suggesting that Sr2+-induced asynchronous responses are quantal. Quantal amplitude ...
متن کاملP19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 38 شماره
صفحات -
تاریخ انتشار 2008